INDICE

ECUACIONES DIFERENCIALES
4.1 Teoria preliminar
4.1.1 Sistema de ecuaciones diferenciales lineales
4.1.2 Sistema de ecuaciones diferenciales lineales homogeneas
4.1.3Solucion general y particular de EDL
4.2Metodos de solucion de EDL
4.2.1Metodos de los operadores
4.2.3utilidad TL
4.3Aplicaciones
CALCULO INTEGRAL 3.1 Áreas 3.1.1 Áreas bajo la grafica de una función 3.1.2 área entre la grafica de las funciones 3.2 longitud de curvas 3.3 Calculo de volúmenes sólidos de revolución 3.4 Calculo de centroides 3.5 Otras aplicaciones 4.1 Definición de serie 4.1.1 Finita 4.1.2 Infinita (criterio de D´Alembert) 4.2 Serie numérica convergencia 4.3 Serie de potencias 4.4 Radio de convergencia 4.5 Serie de Taylor 4.6 Representación de funciones por serie de Taylor 4.7 Cálculo de integrales expresadas como serie de Taylor

lunes, 27 de junio de 2011

3.2 Longitud de curvas

Longitud de curvas planas
La longitud de una curva plana se puede aproximar al sumar pequeños segmentos de recta que se ajusten a la curva, esta aproximación será más ajustada entre más segmentos sean y a la vez sean lo más pequeño posible.
Definición:
Si la primera derivada de una función es continua en [a,b] se dice que es suave y su gráfica es una curva suave.
Cuando la curva es suave, la longitud de cada pequeño segmentos de recta se puede calcular mediante el teorema de Pitágoras y (dL)2=(dx)2+(dy)2, de tal forma que sumando todos los diferenciales resulta:
Definición:
Si f es suave en [a,b], la longitud de la curva de f(x) desde a hasta b es:


EJEMPLOS:  AQUI







Ejercicios
Calcule la longitud de las siguientes curvas: Parámetricas
a)$x=4\cos t+5$ $0\leq t\leq 2\pi $ $y=5\sin t-1$
b)La astroide MATHcon $\ a>0$
c) MATH MATH

Calcule la longitud del segmento de curva desde $t=t_{0}$ hasta$t=t_{1}$
a) MATH MATH
b) MATH MATH


No hay comentarios:

Publicar un comentario